首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   54篇
  2023年   3篇
  2022年   2篇
  2021年   17篇
  2020年   9篇
  2019年   9篇
  2018年   18篇
  2017年   14篇
  2016年   24篇
  2015年   44篇
  2014年   55篇
  2013年   71篇
  2012年   63篇
  2011年   68篇
  2010年   46篇
  2009年   26篇
  2008年   43篇
  2007年   41篇
  2006年   31篇
  2005年   18篇
  2004年   22篇
  2003年   23篇
  2002年   18篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1961年   1篇
排序方式: 共有721条查询结果,搜索用时 62 毫秒
71.
The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9 kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co-expressed and activated LmxMPK4 in a dose-dependent manner. To our knowledge this is the first time that an in vitro activator of an essential Leishmania MAP kinase was identified and our findings form the basis for the development of drug screening assays to identify small molecule inhibitors of LmxMPK4 in the search for new therapeutic drugs against leishmaniasis.  相似文献   
72.
73.
Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of l-isoleucine catabolism. Little is known about the clinical presentation associated with this enzyme defect, as it has been reported in only a limited number of patients. Because the presence of C5-carnitine in blood may indicate SBCADD, the disorder may be detected by MS/MS-based routine newborn screening. It is, therefore, important to gain more knowledge about the clinical presentation and the mutational spectrum of SBCADD. In the present study, we have studied two unrelated families with SBCADD, both with seizures and psychomotor delay as the main clinical features. One family illustrates the fact that affected individuals may also remain asymptomatic. In addition, the normal level of newborn blood spot C5-acylcarnitine in one patient underscores the fact that newborn screening by MS/MS currently lacks sensitivity in detecting SBCADD. Until now, seven mutations in the SBCAD gene have been reported, but only three have been tested experimentally. Here, we identify and characterize an IVS3+3A>G mutation (c.303+3A>G) in the SBCAD gene, and provide evidence that this mutation is disease-causing in both families. Using a minigene approach, we show that the IVS3+3A>G mutation causes exon 3 skipping, despite the fact that it does not appear to disrupt the consensus sequence of the 5′ splice site. Based on these results and numerous literature examples, we suggest that this type of mutation (IVS+3A>G) induces missplicing only when in the context of non-consensus (weak) 5′ splice sites. Statistical analysis of the sequences shows that the wild-type versions of 5′ splice sites in which +3A>G mutations cause exon skipping and disease are weaker on average than a random set of 5′ splice sites. This finding is relevant to the interpretation of the functional consequences of this type of mutation in other disease genes.  相似文献   
74.
During the latest years medium-sized (15–30 μm), single-celled dinoflagellates have been reported to form blooms in the northern Baltic Proper and the Gulf of Finland in winter and spring. Recent studies (Kremp et al., 2003. Proceedings of the 7th International conference of Modern and Fossil Dinoflagellates, September 21–25, Nagasaki, Japan, 66 pp.) indicate that those blooms are caused by two isomorphic species – Scrippsiella hangoei (Schiller) Larsen, and a new species, tentatively belonging to the genus Woloszynskia. Until now there has been no report on how widely distributed these phytoplankton species are in the Baltic Sea. In this study, the occurrence of Scrippsiella/Woloszynskia complex in the entire Baltic Sea was investigated, by using monitoring data from 1997 to 2003. The species occurred in a salinity range from 2 to 8 PSU. Highest concentrations were observed at salinity 4.5–6.5 PSU. Maximum cell densities of Scrippsiella/Woloszynskia complex in the water column were mainly obtained in April or in the beginning of May by the water temperature <3 °C prior to stratification was formed. In the central Gulf of Finland, the second maximum was found in 1999 and 2002 by the temperature >6 °C. Bloom formations in the Baltic Proper and in the Gulf of Finland may not only be explained by optimum temperature and salinity, but also with other factors e.g. high nutrient concentrations and good seeding conditions from the sediments.  相似文献   
75.
The aim of the present studies was to determine whether the mechanism of biological action of garlic-derived sulfur compounds in human hepatoma (HepG2) cells can be dependent on the presence of labile sulfane sulfur in their molecules. We investigated the effect of allyl sulfides from garlic: monosulfide, disulfide and trisulfide on cell proliferation and viability, caspase 3 activity and hydrogen peroxide (H(2)O(2)) production in HepG2 cells. In parallel, we also examined the influence of the previously mentioned compounds on the levels of thiols, glutathione, cysteine and cysteinyl-glycine, and on the level of sulfane sulfur and the activity of its metabolic enzymes: rhodanese, 3-mercaptopyruvate sulfurtransferase and cystathionase. Among the compounds under study, diallyl trisulfide (DATS), a sulfane sulfur-containing compound, showed the highest biological activity in HepG2 cells. This compound increased the H(2)O(2) formation, lowered the thiol level and produced the strongest inhibition of cell proliferation and the greatest induction of caspase 3 activity in HepG2 cells. DATS did not affect the activity of sulfurtransferases and lowered sulfane sulfur level in HepG2 cells. It appears that sulfane sulfur containing DATS can be bioreduced in cancer cells to hydroperthiol that leads to H(2)O(2) generation, thereby influencing transmission of signals regulating cell proliferation and apoptosis.  相似文献   
76.
Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed.  相似文献   
77.
78.
Bektas I  Fellenberg C  Paulsen H 《Planta》2012,236(1):251-259
Water-soluble chlorophyll protein (WSCP) has been found in many Brassicaceae, most often in leaves. In many cases, its expression is stress-induced, therefore, it is thought to be involved in some stress response. In this work, recombinant WSCP from Arabidopsis thaliana (AtWSCP) is found to form chlorophyll-protein complexes in vitro that share many properties with recombinant or native WSCP from Brassica oleracea, BoWSCP, including an unusual heat resistance up to 100°C in aqueous solution. A polyclonal antibody raised against the recombinant apoprotein is used to identify plant tissues expressing AtWSCP. The only plant organs containing significant amounts of AtWSCP are the gynoecium in open flowers and the septum of developing siliques, specifically the transmission tract. In fully grown but still green siliques, the protein has almost disappeared. Possible implications for AtWSCP functions are discussed.  相似文献   
79.

Background

Determining the distances over which seeds are dispersed is a crucial component for examining spatial patterns of seed dispersal and their consequences for plant reproductive success and population structure. However, following the fate of individual seeds after removal from the source tree till deposition at a distant place is generally extremely difficult. Here we provide a comparison of observationally and genetically determined seed dispersal distances and dispersal curves in a Neotropical animal-plant system.

Methodology/Principal Findings

In a field study on the dispersal of seeds of three Parkia (Fabaceae) species by two Neotropical primate species, Saguinus fuscicollis and Saguinus mystax, in Peruvian Amazonia, we observationally determined dispersal distances. These dispersal distances were then validated through DNA fingerprinting, by matching DNA from the maternally derived seed coat to DNA from potential source trees. We found that dispersal distances are strongly right-skewed, and that distributions obtained through observational and genetic methods and fitted distributions do not differ significantly from each other.

Conclusions/Significance

Our study showed that seed dispersal distances can be reliably estimated through observational methods when a strict criterion for inclusion of seeds is observed. Furthermore, dispersal distances produced by the two primate species indicated that these primates fulfil one of the criteria for efficient seed dispersers. Finally, our study demonstrated that DNA extraction methods so far employed for temperate plant species can be successfully used for hard-seeded tropical plants.  相似文献   
80.
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号